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Find all or nearly all relevant documents using
minimal assessment costs

High Recall problem

Some problems:
» Legal eDiscovery
» Systematic Review
» Building test collection
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Technology Assisted Review (TAR):
computer-assisted methods to do eDiscovery

Continuous Active Learning (CAL):
» A TAR protocol

» Human in loop with a machine learning model
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Refresh:
» Use available judgments to build a classifier
» Produce next set of documents to be judged

Refresh Strategy
» When to refresh?
» How to refresh?

Objective: Investigate various refresh strategies;
their effectiveness and efficiency



QOutline

» Refresh Strategies

» Static batch sizes
» Partial refresh
» Precision based

» Results
» Summary
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BMI Strategy

Used in the Baseline Model Implementation (BMI)
at the TREC 2015 and 2016 Total Recall tracks

Train and score all documents every K assessments
(K increases exponentially)

After every refresh, K + K + (K +9)/10



Partial Refresh

Perform frequent scoring on a smaller set of data

Periodic complete scoring
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Precision Based Refreshing

Refresh when “output quality” falls below some
threshold
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Precision Based Refreshing

Refresh when “output quality” falls below some
threshold

Problem: Defining “output quality”

Refresh when the precision of the last m assessed
documents fall below p



Precision Based Refreshing
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Dataset and Experiment

» Athomel test collection from the TREC 2015
Total Recall track
» Around 290k documents; 10 topics

» Implementation of CAL from HiCAL!
» Recall at certain effort

» Normalized Effort = No. of Assessments / Total
no. of relevant documents

» Simulation running time

'http://hical.github.io


http://hical.github.io

Results

BMI vs Static Batch Refreshing

Strategy Avg. Recall | Avg. Recall | E,,, for | Running Time
Q(Eporm=1) | O(E;orm=2) | 75% recall (in min)
bmi \ 0.715 \ 0.905 \ 1.128 0.22
static(k=1) 0.750 0.926 1.021 49.29
static(k=100) 0.704 0.887 1.167 0.47

bmi: exponentially increasing batch size

static(k): fixed batch size of k




Results

Partial Refresh Strategy

Strategy Avg. Recall | Avg. Recall | E,,, for | Running Time
©@(Eporm=1) | ©(Esorm=2) | 75% recall (in min)
static(k=1) 0.750 0.926 1.021 49.29
partial (k=10,s=1000) 0.753 0.926 1.008 40.92
partial (k=100,s=1000) 0.754 0.922 1.013 39.57
partial (k=100,s=5000) 0.756 0.921 1.016 40.70
partial (k=500,s=1000) 0.700 0.815 1.324 38.63

static(k): fixed batch size of k
partial(k,s): complete scoring after k

judgments, partial set size of s documents




Results

Partial Refresh Strategy

Strategy Avg. Recall | Avg. Recall | E,,, for | Scoring Time
O(Eporm=1) | O(E,oom=2) | 75% recall (in min)
static(k=1) 0.750 0.926 1.021 23.88
partial (k=10,s=1000) 0753 | 0.926 1.008 2.25
partial (k=100,s=1000) 0.754 0.922 1.013 0.39
partial (k=100,s=5000) 0.756 0.921 1.016 0.82
partial (k=500,s=1000) 0700 | 0.815 1.324 0.17

static(k): fixed batch size of k
partial(k,s): complete scoring after k
judgments, partial set size of s documents



Results

Precision Based Refreshing

Strategy Avg. Recall | Avg. Recall | E,,, for | Running Time
O(Erorm=1) | O(E,om=2) | 75% recall (in min)
static(k=1) 0.750 0.926 1.021 49.29
precision(m=25,p=0.4) 0.698 0.915 1.129 35.68
precision(m=25,p=0.6) 0.735 0.923 1.059 40.20
precision(m=25,p=0.8) 0.750 0.926 1.024 44.64
precision(m=25,p=1.0) 0.752 0.926 1.014 47.41

static(k): fixed batch size of k

precision(m,p): perform refresh when precision
of last m documents fall below p




Summary

» Frequent refreshing helps achieving higher
recall using lesser assessment effort

> Static batch size of 1 performs great but is
computationally expensive
» Practical for reasonably sized datasets and modern
hardware
» Various alternative strategies can achieve similar
effectiveness with reduced computations



Summary

» Frequent refreshing helps achieving higher
recall using lesser assessment effort

> Static batch size of 1 performs great but is
computationally expensive
» Practical for reasonably sized datasets and modern

hardware
» Various alternative strategies can achieve similar
effectiveness with reduced computations

Questions?
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